Регистрация

   Форум

Интересное и познавательное

Машина времени

Prio
отправлено 23:22, 24.01.2009
Время Вселенной



Таким образом, получается, что, время во Вселенной все-таки есть. Но движется оно, можно сказать, неспешно. Проходят миллиарды и миллиарды лет, пока становятся зримо видны изменения в строении галактик, или в структуре составляющих их звезд. И человечество, если оно хочет хоть что-нибудь узреть и понять на" протяжении короткого промежутка жизни одного поколения, должно запускать машину времени.


Одна из таких "машин" — наше воображение. "Если галактики разбегаются, — говорит оно нам, — то, значит, раньше они были ближе друг к другу. Чем дальше в прошлое, тем теснее они располагались в пространстве..."


Значит, где-то там, "в весьма далеком прошлом, у Вселенной есть начало — момент, когда космическая плотность вещества была невообразимо велика и вся Вселенная сжата в одну точку.


Такое начальное 'состояние бесконечной плотности называется космической сингулярностью. (Кстати, само слово "сингулярность" в переводе означает "особенность". Оно как бы намекает на то, что это состояние совершенно необычно и исключительно).


Но бесконечность, вообще-то, понятие математическое. Что оно может означать физически? Скорее всего, предел, границу применимости модели Фридмана' За ним, в области сингулярности, становятся неприменимы многие законы привычного нам мира, в том числе, по всей вероятности, и общая .теория относительности.


...Качается большой маятник Вселенной. От.точки сингулярности к некому пределу, за которым расширение Вселенной сменится ее сжатием. И снова вещество начнет сжиматься в некую точку, как было уже однажды. И пусть это время далеко от нас,> человечество не может не задуматься о том, что его ждет в данном случае.

     
Prio
отправлено 23:23, 24.01.2009
Уникальные фридмоны




И размышления лучших умов человечества привели к обозначению престранной картины. Оказывается, не надо дожидаться "конца света", чтобы увидеть Вселенную, сжимающуюся в невообразимо плотный комок, в точку. Такие Вселенные, вполне возможно, существуют уже сегодня. Они — рядом с нами, возможно, и внутри нас...





Разбегание галактик оказалось лишь одним из следствий, вытекавших из рассмотрения Фридманом уравнений Эйнштейна. Помните, мы говорили об искривлении пространства? Двухмерный мир (лист тонкой жести) нетрудно изогнуть (хотя бы при помощи гирь) таким образом, -что получится какая-нибудь незамкнутая поверхность г— например,» нечто похожее по форме на седло. А если, очень уж постараться, то можно согнуть плоский лист и в замкнутую сферу.



Подобным же образом, согласно Фридману, и искривленное трехмерное пространство может быть разомкнутым, а может быть и замкнутым. Каким именно оно станет, зависит- от многих обстоятельств.

Например, если плотность материи в таком мире будет ниже некой критической , величины, то он окажется незамкнутым, сможет расширяться до бесконечности. Ц луч света, выпущенный из какой-либо точки внутри него, никогда не вернется назад, разве что отразится, натолкнувшись на какую-либо преграду)



Если же плотность вещества превысит некоторое критическое значение, то пространство окажется замкнутым. Оно будет то расширяться, то сжиматься, не выходя все-таки за некоторые пределы.

Для наглядности такой пульсирующий замкнутый мир мы можем представить, скажем, в виде баскетбольного мяча, внутри которого то раздувается, то спускает воздух резиновая камера. Само собой разумеется, что при всем старании нам вряд ли удастся раздуть камеру больше внутреннего, объема покрышки. Только в теории Фридман имел дело с более многомерным пространством, чем мы в своей аналогии.



И в таком замкнутом пространстве свет, направленный в одну сторону, может облететь всю полость и вернуться с другой стороны, так и не вырвавшись наружу;

Академик А. А. Марков, попытавшийся описать подобный мир математически, назвал такие образования фридмонами — в честь впервые указавшего на возможность их существования Фридмана.



Удивительные вещи должны происходить в таком замкнутом мире. Попробуем описать их опять-таки при помощи упрощенной двухмерной аналогии. Пусть наши плоские существа живут теперь не просто на искривленной плоскости, а на поверхности сферы. И случилось так, что за какую-то провинность они решили отправить в ссылку одного из своих сограждан (мера, кстати, весьма распространенная и в нашем трехмерном, мире). Очертили небольшую по сравнению со всей шаровой поверхностью окружность и сказали: "Живи тут!.."



Через какое-то время жесткость наказания решили усилить — радиус запретительной окружности еще уменьшили. Наказанный стал протестовать, за что ему еще уменьшили территорию... И продолжали уменьшать окружность до1 тех пор, пока она не превратилась в точку, А сам изгнанник за миг перед этим должен был подпрыгнуть и, покинув поверхность шара, очутиться в каком-то ранее совершенно немыслимом для двухмерного существа третьем измерении., неком потустороннем мире.



Сходным образом могли обстоять дела и в нашем трехмерном мире, С той лишь разницей, что изоляция могла выглядеть в виде некой сферы, радиус "свободы" которой постепенно все уменьшался, оставляя изгнаннику лишь возможность перехода из этого мира в иной, если он, конечно, существует.



Полностью замкнутый мир никоим образом, по идее, не проявляет себя7 вовне: из него не проникают наружу даже световые лучи. Значит, снаружи он должен представлять для стороннего наблюдателя нечто, не имеющее ни размеров, ни массы, ни электрического заряда.



Но вот в том месте, где изгнаннику предоставили возможность выхода в иной мир, средняя плотность материи в замкнутом пространстве должна быть, очевидно, меньше критической. И полностью замкнутого мира в данном случае не получается. Получится почти замкнутый И вот это "почти" дает существенное качественное отличие. Полная масса и полный электрический заряд теперь уже не равны нулю. У луча света есть возможность если не вырваться наружу, то извне попасть внутрь. Между двумя мирами образуется нечто вроде коридора, по которому они могут сообщаться между собой. Причем для нашего изгнанника "дверь" в этот "коридор", по сути дела, олицетворяет весь мир, расположенный по другую сторону.



К сказанному остается добавить, что полная масса и полный электрический заряд почти замкнутого мира уже не равны нулю.

     
Prio
отправлено 23:24, 24.01.2009
Быть может, эти электроны…




Таким образом, в нашем воображении вырисовывается картина, на описание которой не каждый бы и фантаст решился. Быть может, и наша Вселенная со всеми ее солнцами, млечными путями, туманностями, квазарами — всего лишь один из фридмонов.



Впрочем, фридмоны не обязательно должны заключать в себе только гигантские мироздания. Их содержимое может быть и более скромным: например, содержать в себе "всего лишь" одну галактику, звезду... А также несколько граммов или даже несколько сотых грамма вещества. Самое удивительное, что при всем этом все фридмоны внешне могут выглядеть совершенно одинаково.



Причем "лазейка", связанная с идеей фридмонов, имеет определенные преимущества перед всеми другими. Дело в том, что размеры сферической "горловины", которая ведет в почти замкнутое. пространство, зависит от величины электрического заряда, содержащегося в этом почти замкнутом пространстве. Чем больше заряд, тем и размеры больше.



В таком случае, казалось бы, в природе должны встречаться частично замкнутые миры самых различных размеров (по крайней мере по виду "снаружи"). Ну а поскольку трудно представить себе, что огромная Вселенная имеет микроскопический электрический заряд, то фридмон, "включающий" в себя огромные миры, вроде бы должен иметь весьма малое распространение.



И вот тут природа как бы проявляет симпатию к этому удивительному феномену. Согласно расчетам академика А". А. Маркова, развившего идеи Фридмана, почти замкнутая система с большим электрическим зарядом должна быть неустойчива. Чтобы обрести эту самую устойчивость, она стремится во что бы то ни стало выбросить избыток электричества "наружу". Причем тот заряд1, при котором система приобретает желанное равновесие, должен быть как раз микроскопический, близкий к заряду, которым обладают многие элементарные частицы.



Таким образом, получается, что если пространство в какой-то момент времени и обладало большим зарядом, то через некоторое время заряд этот .неизбежно уменьшится. А значит, соответственно сократятся размеры и масса пространства, каковыми они предстают перед сторонним наблюдателем. То есть, говоря проще, согласно математическим выкладкам получается, что стягивание гигантских миров в точку отнюдь не маловероятно, а, напротив, практически неизбежно.



Исходя из теории фридмонов получается, что мы должны свыкнуться с мыслью: любая элементарная частица в принципе может оказаться "входом" в иные миры. Проникнув через этот вход, мы можем оказаться в совершенно иной Вселенной. Нашему взору, возможно, предстали бы иные галактики, населенные, вполне возможно, своими цивилизациями.



Оглянувшись же назад, мы бы увидели, что до микроскопических размеров сжалась теперь наша родная Вселенная. Если бы мы захотели вернуться назад, то пришлось бы снова проделать путь по коридору между мирами. Ну а окажись бы любопытство сильнее страха, то вполне возможно, мы могли бы отыскать другой фридмон, и тогда бы наше путешествие по иным мирам могло продолжаться до бесконечности.

     
Prio
отправлено 23:25, 24.01.2009
Вселенная Стивена Хокинга




Описанные выше путешествия могли бы привести не только к перемещениям в пространстве, но и, что для нас в данном случае наиболее интересно, к перемещениям во времени. Так во всяком случае считают Стивен Хокинг и его последователи.



Но прежде чем мы углубимся в устройство подобных "туннелей времени", надо, наверное, сказать несколько слов и о самом Хокинге. Уж больно неординарная это фигура даже для нашего времени, которое, кажется, уже отучило нас удивляться.



...Недавно в Кембридже состоялось, не совсем обычное торжество. Профессора и студенты знаменитого Трйнити-колледжа — того самого, где профессором был когда-то сам сэр Исаак Ньютон, — пением и аплодисментами приветствовали человека, неподвижно сидевшего в инвалидной коляске.



Человек в коляске был нем и недвижим. Тем не менее именно он сегодня занимает ту кафедру, которую когда-то занимал Ньютон, читает лекции студентам, создает новые книги и научные гипотезы, в том числе наиболее "безумные", а значит, и чрезвычайно интересные.



Беда постигла Стивена Хокинга в юности, когда он учился на первом курсе колледжа. Неизлечимая болезнь практически обездвижила все тело, а неудачная операция привела вдобавок еще и к тому, что Хокинг онеменел. И тем не менее он не сдался.



В какой-то мере Хокингу помогает современная техника. Коляска с электроприводом позволяет ему передвигаться самостоятельно, а расположенный под сиденьем кресла компьютер с синтезатором речи дает ему возможность говорить.



Стивен Хокинг сумел не только закончить колледж, но и стать профессором, написать несколько книг. Одна из последних называется "От Большого взрыва до черных дыр". На ней мы и остановимся более подробно.



Она представляет собой относительно небольшую (200 страниц) научно-популярную работу, в которой описаны все космологические теории и гипотезы последнего времени.



— Издатель сказал мне, что каждая новая формула будет сокращать число читателей вдвое, — сказал Хокинг. Поэтому в книге всего одна формула — это знаменитое эйнштейновское уравнение. Все остальное я постарался изложить как можно более доступным языком...



И надо сказать, что попытка популяризации Хокингу вполне удалась. В своей книге он рассказывает о гипотезе Большого Взрыва, хо-гласно которой вся наша Вселенная когда-то образовалась из одной-единственной сингулярной точки.



По неведомой пока нам причине в один прекрасный миг . эта точка взорвалась, и с той поры ее вещество все время расширяется, преобразуясь по дороге. Затем, как полагают многие ученые, большой маятник Вселенной качнется в обратную сторону — расширение может смениться сжатием до новой сингулярной точки. Таким образом, наша Вселенная должна иметь начало и конец.



Однако Хокинг с такой точкой зрения не согласен. Он полагает, что она чересчур пессимистична, поэтому ввел в науку новое понятие — воображаемое время. Используя это понятие, Хокинг, создал модель такой Вселенной, у которой нет ни начала ни конца.



"Представьте себе движение по воображаемому шару, — пишет Хокинг. — Вы начали движение по нему с северного полюса и постепенно движетесь к югу, все время меняя широту места..."



Говоря иначе, Хокинг своими словами пересказывает ту притчу о плоскостном мире, с которой мы уже познакомились. Но рассматривает он ее применительно к нашему трехмерному (или, если угодно, четырехмерному) миру и приходит в конце концов к неожиданному выводу.



"По мере движения, — продолжает он свой рассказ, — широта места, т. е. длина окружности, будет возрастать, а потом, когда вы перевалите экватор, начнет сокращаться, .пока не превратится в нуль. Что это — точка сингулярности?.. Нет, ведь если вы продолжите движение, то широта снова станет возрастать..."



Конечно, все сказанное выглядит весьма схематично. На самом деле мир устроен, наверное, значительно сложнее. Однако в том и есть один из талантов Хокинга — говорить о сложных вещах или емкими, точными формулами, или просто наглядными образами.



Он ввел понятие воображаемого времени, которое не имеет никакой связи с настоящим физическим временем, однако оказалось весьма удобным для описания многих процессов космологии.

Теория воображаемого времени — продолжение работы Хокинга над теорией "черных дыр". Когда он впервые познакомился с феноменом "черных дыр", введенным в обиход профессором Роджером Пенроузом, то был весьма поражен, что "черная дыра" — это такое место во Вселенной, откуда из-за чрезвычайно сильного тяготения, а значит, и искривления пространства не вырывается ничто: ни элементарная частица, ни луч света... "Получается, что "черная дыра" ничего не излучает в пространство, а посему может быть- совершенно незаметна, — сказал сам себе Хокинг. — Но разве так бывает?.."



И он-таки нашел возможность доказать, что "черная дыра" может посылать в пространство некое излучение, радиацию, которую теперь так и называют — радиация Хокинга.



"Представьте себе, что поверхность шара, по которому мы'только что двигались, вибрирует, — продолжает свои рассуждения Стивен Хокинг. -г- Эта вибрация едва заметна, ее величина 10~23 см, то есть в 10~20 меньше, чем диаметр протона. Но тем не менее этой величины вполне достаточно, чтобы поверхность шара претерпевала изменения, а значит, от него в пространстве распространялись некие волны излучения..."



Говоря иначе, Хокинг с другой стороны подошел к теории замкнутой или почти замкнутой Вселенной. Он попытался объединить два понятия, существовавших до того раздельно,.— фридмоны и "черные дыры". Это объединение повлекло за собой далеко идущие последствия, к рассказу которых мы сейчас и перейдем.

     
Prio
отправлено 23:26, 24.01.2009
Теория "червячных дыр"




Представьте себе тот же шар, который мы использовали в своих аналогиях уже неоднократно. По поверхности этого шара ползают все те же плоскостники-двухмерники. Понятно, что для того, чтобы попасть из точки А в точку В на поверхности шара, они должны преодолеть некий путь по дуге.



И вот некий гений местного масштаба однажды все-таки сумел сообразить не только то, что движение по поверхности шара происходит по дуге, но и то, как этот путь можно спрямить. Не берусь рассказать обо всем ходе и логике рассуждений "двухмерника", в нашем же трехмерно-четырехмерном мире это можно показать на простейшей аналогии.



На яблоке поселился червяк. Вместо того чтобы передвигаться из одной точки в другую по поверхности яблока, он просто прогрызает ходы-червоточины. Так путь по дуге превращается в более короткий1 путь по хорде.



Оказывается, подобные "червоточины" вполне могут существовать ив окружающей нас Вселенной. Чтобы понятькак это может быть, давайте несколько отступим по времени назад и расположим события в их логической последовательности.



Как известно, суть гравитации, открытой И. Ньютоном в 1687 году, заключается в том, что два тeлa, обладающих некой массой, испытывают взаимное притяжение. Сила притяжения зависит от расстояния между телами. А это, в свою очередь, позволяет выдвинуть следующее предположение: если одно из тел меняет свое положение, меняется и сила притяжения, которое оно оказывает на другое тело.

Причем rpaBHfanno'HHbie эффекты протекают со скоростью, значительно большей, чем скорость света. Это на сегодняшний День известно точной если солнечный луч движется к нам 8 мин, то стоит Солнцу чуть изменить свое положение, как Земля чувствует изменение гравитационного поля немедленно.

Как же тогда примирить эту особенность с теорией Эйнштейна, которая утверждает, что именно скорость света есть абсолютно непреодолимый предел скорости? Сам Эйнштейн попытался найти решение этой проблемы в рамках общей теории относительности.



Суть ее для данного случая заключается в том, что согласно предположению Эйнштейна пространство не "плоское", как полагали раньше, а "изогнутое", деформированное под воздействием'распределенных в нем массы и энергии.



Говоря другими словами, это означает, что наше трехмерное пространство загибается в некое четвертое измерение, подобно тому как двухмерный лист бумаги, если его скрутить, загибается JB третье измерение.



Последствия этой теории не до конца осознаны и в наши.дни. Пространство и время потеряли свой абсолютный характер и, как мы уже говорили, уступили место новому понятию "пространства-времени". Изменения, вносимые при этом в наши геометрические понятия, одновременно носят и количественный и качественный характер.



Количественный — потому, что отныне необходимо учитывать искривленность пространства и времени, а это предполагает, к примеру, что сумма углов треугольника не обязательно должна быть равна 180° (пространственная геометрия Лобачевского), а, прямые параллельные линии согласно той же геометрии в некоторых случаях могут и пересекаться.



Качественный — в основном потому, что становится возможным соединить две точки совершенно различными способами, не имеющими друг с другом пространственно-временной связи. Именно на этих неожиданных путях вселенские "червяки" и прогрызают, свои необыкновенные "дыры".



Чтобы яснее понять, что же знаменуют собой те "различные способы", которыми можно соединить две точки, обратимся к наглядному примеру, приводимому тем же Стивеном Хокингом в его новой книге "Короткая история времени".



Понаблюдаем за самолетом, летящим над пересечённой местностью, предлагает нам английский ученый. Его траектория в небе. — прямая линия в трехмерном пространстве. А вот тень его следует по изогнутой траектории — в зависимости от рельефа — в двухмерном пространстве.



Точно так же Земля движется вокруг Солнца по прямой траектории в четырехмерном пространстве (три классических пространственных измерения плюс четвертая координата *г время). А вот в трехмерном пространстве, отображение нашей планеты перемещается по изогнутой траектории — эллипсу, примерно так же, как движется по какой-то кривой тень самолета.



Из всего этого следует, что при помощи "червячной дыры", проходящей через четвертое пространственное измерение, можно изрядно сократить себе путь как в пространстве, так и во времени.



Существование таких кратчайших путей было предсказано теоретиками еще в 1916 году, но только двадцать лет спустя, когда Эйнштейн совместно с Розеном взялся за анализ своих же-уравнений, была выдвинута достаточно проработанная гипотеза о неком "мосте", который может связшвать две точки более коротким путем, чем общепринято. Эта гипотеза получила название "мост Эйнштейна — Розена".



И вот в конце 50-х годов Джон Уилер впервые ясно обрисовал, где именно эти "мосты" в нашей Вселенной могут быть наведены. Ему же принадлежит и название "червячные дыры" по известной аналогии с ходами, проделываемыми плодовым червяком. Итак, согласно Уилеру, "червячные ходы", скорее всего, могут возникать в тех районах Вселенной, где пространство сильно изогнуто. То есть, говоря иначе, в районах, где существуют те самые "черные.дыры", о которых мы уже говорили.



При этом, Однако, Уилер и его последователи получили поначалу не слишком обнадеживающую картину. Во-первых, было неясно, как именно могла бы появиться "червоточина" — теория не находила механизмов для ее образования. Во-вторых, получалось, что два входа "червоточины" — теоретики назвали их "ртами" — могут сообщаться между собой весьма незначительное время. Не успеет "червоточина" появиться, как канал или "глотка", соединяющая оба "рта" тотчас должна мгновенно стянуться, давая в итоге две не сообщающиеся между собой "черные дыры".



Таким образом, сконструированные теоретиками "червоточины" показались им нежизнеспособными, и интерес к космическим туннелям вскоре угас.

     
Prio
отправлено 23:26, 24.01.2009
Путешествия по "червоточине"




Интерес к "червоточинам" возродился всего несколько лет назад, когда известный американский астрофизик Кип Торн при участии своих сотрудников и учеников решил вновь заняться этой проблемой. Говорят, одним из толчков к исследованию послужила просьба, адресованная Торну его коллегой и приятелем, известным ученым Карлом Саганом. Саган на сей раз решил выступить в несвойственной ему роли и написал научно-фантастический роман "Контакт", действие которого происходит как раз в туннеле-"червоточине".



Чтобы придать правдоподобие выдумке своего приятеля, Торн и решил посмотреть, каким образом "червоточину" можно уберечь от мгновенного разрушения. Для начала исследователи попробовали укрепить стенки туннеля некой "экзотической материей".



Материя должна быть действительно на редкость экзотической: она должна выдерживать давления в миллиарды миллиардов атмосфер да при этом еще и обладать, как показывают расчеты, отрицательной... массой — явлением еще не известным в физике.



Однако тем не менее "строительство" продвигалось. Чтобы сделать "червоточину" пригодной для- передвижения астронавтов, в транспортный туннель поместили вакуумную трубу. Было предложено и еще? одно решение: ученые наделили экзотическую материю такими свойствами, чтобы она не взаимодействовала с обычным веществом. Теперь астронавты могли двигаться сквозь туннель, вовсе не ощущая сопротивления.



Работая с "червоточинами", Торн попытался теоретически обосновать и еще одну идею, ранее обсуждавшуюся применительно к "черным дырам". Эта идея *- путешествие во времени. Согласно расчетам получается, что в принципе можно если не запустить ракету, которая прилетит вчера, то по крайней мере по прилете увидеть хвост своего собственного стартующего корабля.



Ну а если заниматься нелодобными "фокусами", а чем-либо более серьезным, то с помощью такого приема можно будет отправиться в прошлое. Правда, и тут есть свои сложности. Сложность первая:



чтобы сместиться в прошлое, скажем на тысячу лет, придется предварительно двигать "рот" около столетия со скоростью, сравнимой с около световой. Сложность вторая и, пожалуй, главная — это возможное нарушение принципа причинности. Следствие, в данном случае может повлиять на причину, и никто не Знает, чем все это может кончиться...



Ну а чтобы вы не печалились заранее, скажем, что сам Кип Торн весьма расстроен тем шумом, который подняли вокруг его гипотез досужие журналисты. Это ведь всего лишь рабочая гипотеза, в которой сам ученый не видит ничего особенно необычного.



"Пока мы не знаем всех физических законов, на основе которых могут (или не могут) возникать и функционировать космические "червоточины", — говорил он. — И э то же время известные законы их не запрещают. Более того, по представлениям таких крупных специалистов, как С. Хокинг и Дж. Уилер, в масштабах околопланковской длины, то есть где-то около 10~43 см, все пространство состоит "из микроскопических "червоточин" и представляет собой, как ее называют, квантовую пену. Может быть, когда-нибудь, через тысячелетия, люди научатся раздувать эти "червоточины" до космических размеров...



Что же касается принципиальной возможности перемещения во времени, то К.Торн не видит тут принципиальных "ловушек", поскольку возможность такого путешествия основана на уже достаточно проверенном и привычном эффекте теории относительности — "растягивании" времени с увеличением скорости.



"Словом, машина времени существует самым очевидным образом... но в бесконечно малом мире" — пишет по этому поводу французский научно-популярный журнал "Сьянс э ви". Такая констатация, конечно, мало обнадеживает человека, который бы хотел совершить путешествие во времени, ну если не завтра, то по крайней мере в начале следующего века. И все-таки должен ли человек оставить всякую надежду на путешествия в пространстве и времени? Конечно, нет. Если космический корабль будущего и машина времени еще не появились на свет, то гипотеза о том, что однажды они появятся, уже перестала быть чисто теоретической.



Сверхскоростные перемещения в пространстве — первая,и наиболее доступная область применения "червячных дыр". Сегодня для межпланетных полетов даже в Солнечной системе требуются годы и даже десятилетия. Ну а тем, кто пожелал бы ощутить себя менее одиноким во Вселенной и отправился бы на поиски жизни к другим планетам, путешествие обернулось бы 160 тысячами годов полета до самой близкой к нам звезды — Проксимы Центавра.



Даже если предположить, что корабль сможет достичь скорости света, то и тогда на дорогу уйдет не менее Десятка лет. Однако самая передовая техника и самые большие оптимисты не заглядывают за рубеж 20% от скорости света. Значит, чтобы начать исследования за пределами Млечного пути, не хватит и нескольких поколений космонавтов? Не отчаивайтесь, "червячные дыры" могут сделать подобные путешествия практически мгновенными. Главной заботой станет правильный выбор нужного туннеля, чтобы очутиться именно в нужном месте, а не в каком-либо другом...



Путешествия во времени организовать и осуществить будет значительно сложнее. Здесь необходимо помнить, что в соответствии со все теми же уравнениями Эйнштейна время течет тем медленнее, чем быстрее происходит перемещение. Другими словами, время становится понятием относительным: абсолютное время и единые часы не существуют.



Эта гипотеза уже подтверждена экспериментально в начале 70-х годов, когда было измерено расхождение трех часовых механизмов — одни двигались вокруг Земли на запад, другие — на восток, третьи — оставались неподвижны относительно поверхности нашей планеты. Вывод из этого эксперимента оказался таким: часы, перемещавшиеся на восток, показали по возвращении на место старта меньшее время, чем другие часы, поскольку с учетом скоростей собственно самолета, на котором они находились, и вращения планеты (а Земля, как известно, вращается с запада на восток) данные измерители времени двигались с большей скоростью, чем все остальные.



Это проявление теории относительности уже известно нам под названием "парадокса близнецов". Однако наш близнец-космонавт ни в коем случае не смог бы вернуться во времени назад. Для этого ему непременно пришлись бы пройти через "червячную дыру". Чтобы лучше понять это, представим такую "дыру", начало которой пусть находится на Земле, а выход — на каком-нибудь астероиде, неподалеку от нашей планеты. Представим также, что этот самый астероид отправился в полет по Вселенной, имея у себя "на борту" некого новорожденного. Что будет происходить с ним во время полета?



Оконечность "червячной дыры" и находящийся в этом месте ребенок будут стареть медленнее, чем та ее часть, которая находится на Земле. (По аналогии с "парадоксом близнецов" — тот, кто путешествует, стареет медленнее.) Предположим, что к концу 50-летнего полета астероида Земля состарится на 200 лет — такова разница в их скоростях движения. Тогда и разница в возрасте двух оконечностей "червячной дыры" составит 150 лет.



Предположим теперь, что житель астероида, теперь уже далеко не мальчик, а солидный пятидесятилетний мужчина, решит вернуться на Землю, пользуясь туннелем "червячной дым*". Перемещение по ней происходит практически мгновенно, и поскольку особенностью "дыры" является то, что она связывает идентичное время, наш мужчина прибудет на Землю в ту пору, когда до начала всей рассказанной нами истории будет оставаться еще 50 лет. То есть он попадет в прошлое, "сьэкономив" 150 лет, поскольку Земля в этот момент будет еще находиться на двухсотом году до начала полета астероида.



Если же теперь наш путешественник вновь отправится на астероид, но уже не через "дыру", а на космическом корабле, двигающемся со скоростью, близкой к скорости астероида (чтобы время этого путешествия не выглядело чудовищно большим по сравнению с временем полета), то он может прибыть на астероид, допустим, на 35-м году полета астероида. Так как последний был уже в полете порядка 10 лет до того, как корабль покинул Землю, то путешествие, таким образом, продлится 25 лет по собственному времени путешественника. И наш мужчина ступает на астероид в возрасте 75 лет... и слышит приветствие от молодого тридцатипятилетнего человека, который не кто иной, как он сам!



Причем только старец в данной ситуации будет знать, что видит самого себя; молодой же человек еще понятия не имеет, что в возрасте 50 лет он решит отправиться назад на Землю. Интересно, а какой будет выглядеть наша история в том случае, если старцу вдруг придет в голову сумасбродная мысль прикончить своего "двойника"?.. Ситуация похлеще, чем во многих детективах...

     
Prio
отправлено 23:27, 24.01.2009
Волчок в реке Времени




Возможности фантазировать по поводу путешествий во времени и пространстве поистине безграничны. Но это повествование все-таки не детективный и не научно-фантастический роман. А потому давайте вернемся непосредственно к теме нашего разговора и рассмотрим еще некоторые возможности управления потоками времени.



Лет тридцать назад в сборнике трудов Московского университета был опубликован доклад профессора Пулковской обсерватории Н. А. Козырева, поразивший воображение парадоксальностью своих выводов не только людей несведущих, но и специалистов.



Поскольку по своей основной специальности Николай Александрович Козырев был астрономом, то речь он вел поначалу о вещах чисто астрономических. Луна издавна считалась мертвым небесным телом,, уже закончившим свою эволюцию. И вдруг нашелся ученый, который во всеуслышание заявил: на естественном спутнике Земли вполне возможна вулканическая деятельность!



Ох и 'досталось же 'ему от коллег за такое "антинаучное" заявление! Однако ученый мир удивленно затих, когда в 1958 году Н. А. Козырев все-таки высмотрел в свой телескоп вулканическое извержение в кратере Альфонс и даже сумел получить его спектрограмму.



Понадобился еще добрый десяток лет, прежде чем наблюдения Козырева были признаны вполне достоверными. Только в декабре 1969 года Госкомитет по делам открытий и изобретений СССР выдал ученому диплом об открытии лунного вулканизма, а в следующем же году Международная астрономическая академия наградила его именной Золотой медалью с бриллиантовым изображением созвездия Большой Медведицы.



Итак, факт остается фактом — вулканизм на Луне есть, тут уж ничего не попишешь. Однако многие скептики никак не могли успокоиться: уж больно необычным путем Н. А. Козырев пришел к своему открытию. Дело в том, что Николай Александрович полагал: основу лунного вулканизма нужно искать в... потоке времени



Свою уверенность Козырев черпал в нескольких простых экспериментах. Вот один из них. Ученый брал обычные рычажные весы и подвешивал к одному концу коромысла вращающийся по часовой стрелке гироскоп. На другом конце — чашка с гирьками. Дождавшись, когда стрелка весов замерла на нуле, ученый включал электровибратор, прикрепленный к основанию. Причем сила вибрации рассчитывалась таким образом, чтобы вибрация полностью поглощалась массивным ротором волчка.



Как должна отреагировать на это уравновешенная система? Весы могли не шелохнуться, и физики всегда найдут этому вполне правдоподобное объяснение. Весы могли выйти из равновесия; и это тоже вполне можно объяснить. Но как объяснить то, что произошло с весами на самом деле?



Экспериментатор раскручивал гироскоп, вешал его на коромысло — стрелка уравновешенных весов оставалась в точке равновесия. Затем экспериментатор снимал остановившийся гироскоп и раскручивал его вновь, но в обратную сторону. И когда гироскоп снова подвешивался к коромыслу весов, происходило маленькое чудо —' стрелка уравновешенных весов уходила в сторону, показывая: гироскоп стал легче!



Сам Козырев объяснял этот парадокс следующим образом. Гироскоп на весах с электровибратором — это система с причинно-следственной связью. Во втором случае направление вращения волчка противоречит ходу времени. Время оказало на него давление, возникли дополнительные силы, которые можно измерить...



А раз можно измерить, значит, эти силы реально существуют. И тогда получается, что время — это не просто длительность от одного события до другого, измеряемая часами. Время — физический фактор, обладающий свойствами, которые позволяют ему активно участвовать во всех природных процессах, обеспечивая причинно-следственную связь явлений. Козырев, таким образом, установил экспериментально, что ход времени определяется линейной скоростью поворота причины относительно следствия. Согласно его расчетам получалось, что величина такой линейной скорости составляет 700 км/с и имеет знак "плюс" в левой системе координат.



Правда, справедливости ради следует отметить, что подобный же опыт, который провели недавно два японских физика, был забракован их придирчивыми коллегами. Многие ученые ныне считают, что разница в показаниях весов основана прежде всего на погрешности опыта, а также возможных неточностях изготовления карданова подвеса, в котором вращается гироскоп.



Но вот вам описание еще одного опыта, который Козырев проводил специально для скептиков. Он брал самый обыкновенный термос с горячей водой. Только в пробке было проделано отверстие, куда ученый вставил тонкую хлорвиниловую трубку. Термос ставился около весов с гироскопом. Стрелка весов при этом показывала, что вращающийся волчок при весе в 90 граммов стал легче на 4 миллиграмма — величина хоть и крохотная, но вполне осязаемая.



После этого Козырев начинал добавлять по трубке в термос воду обычной комнатной температуры. Казалось бы, как может влиять баллон с горячей водой, которую начинают охлаждать, на ход гироскопа и его вес? Тем более что термос имеет сосуд с двойными стенками, практически полностью исключающий теплообмен с окружающей средой.



Однако стрелка весов сдвигалась каждый раз на одно-два деления — значит, какая-то связь все-таки существовала...



И уж совсем приводил в смятение сторонних наблюдателей опыт, в котором возле весов поочередно ставились два стакана с горячей водой — один с сахаром, другой — без него. Так вот, тот стакан, в котором еще не было сахара, никак не влиял на показания весов, тот же, в котором растворялся сахар, заставлял стрелку сначала отклоняться, а затем по мере окончания процесса растворения, снова возвращаться к исходной отметке.



Какие же, объяснения давал своим, прямо скажем, странным опытам сам Козырев?



— Стоит подлить в термос холодную воду, а в стакан с чаем опустить сахар, — говорил ученый, — как равновесие системы нарушалось потому, что в ней начинают происходить необратимые процессы. Холодная вода не может привести к повышению температуры воды в термосе, а сахар не способен заново кристаллизоваться из раствора. И этот процесс, покуда система снова не придет в равновесие на новом уровне — пока в термосе не установится одинаковая по всему объему температура, а сахар полностью не растворится, — уплотняет время, которое и оказывает "дополнительное" воздействие на гироскоп. Другого объяснения я просто не могу предложить. Мои слова подтверждаются и другими фактами...



А факты эти таковы. Если время воздействует на систему с причинно-следственной связью, то должны меняться и какие-то другие параметры пространства. Так оно и оказывается при проверке. Вблизи термоса, где смешивается горячая и холодная вода, изменяется частота колебаний кварцевых пластинок, уменьшается электропроводность и объем некоторых веществ.



Свои лабораторные опыты Козырев соотносил и с процессами, происходящими во Вселенной. Весьма бурные и могучие тепловые процессы идут как в недрах, так и на поверхности многих звезд. А если это так, рассуждал далее Козырев, то получается, что звезды обязательно должны выделять колоссальное количество времени, то есть, по существу, служить генераторами этой непонятной пока еще нам субстанции.



Но тогда время, как физический фактор, должно подчиняться и основным физическим законам, в частности законам отражения и поглощения. Чтобы убедиться в этом, Козырев провел еще один необычный эксперимент. Он направлял телескоп с помещенным в его фокусе некоторым веществом на какую-либо яркую звезду, но... прикрывал его объектив черной бумагой или тонкой жестью, чтобы исключить влияние световых лучей. Электропроводность вещества, находящегося в фокусе, менялась.



Тонкая жесть сменялась более толстой, затем очень толстой металлической крышкой...



Соответственно уменьшалось и отклонение стрелки гальванометра, что вполне поддается объяснению. Если время — физический фактор, то его вполне можно экранировать...



Конечно, всякий раз находились скептики, которые объясняли поведение стрелки гальванометра и многими другими причинами— инфракрасной частью излучения, которое хоть ненамного, но все же нагревает металлическую крышку, просто погрешностями эксперимента и т. д. И тогда Козырев провел решающий эксперимент.



При его подготовке он руководствовался следующими соображениями. Известно, что обычно мы видим звезду не там, где она в данный момент действительно находится, а там, где она находилась в Момент испускания светового излучения. А свет хотя и является, согласно теории относительности, самым скоростным излучением во Вселенной, все-таки имеет конечную скорость распространения. А вот со временем, как и с гравитацией, дело обстоит иначе — оно не распространяется постепенно по Вселенной, а сразу проявляется во многих ее точках.



Говоря проще, используя свойства времени, можно получать мгновенную информацию из любой точки пространства и столь же быстро передавать ее в любую точку. Только при таком условии мы не вступаем в противоречие со специальным принципом относительности. Так что если вычислить, где в данный момент действительно находится данная звезда, и навести телескоп на этот "чистый" участок неба, то при изменении веса гироскопа гипотеза будет доказана.



Козырев так и поступил. Именно таким образом было зафиксировано положение Проциона. Впрочем, скептиков и это не убедило: они нашли, что да, действительно, в настоящее время подобные эксперименты нельзя объяснить известными законами механики, но, с другой стороны, это вовсе не значит, что таким образом- себя действительно проявляет именно время.



После смерти Н. А. Козырева накал страстей вообще заметно снизился, О "парадоксах Козырева" не то чтобы стали забывать, нет, о них помнят, но воспоминания эти носят некий налет иронии: "Вот, дескать, был такой чудак, который считал..."



Но время — то самое, о котором столько споров! — работает, по всей вероятности, именно на гипотезу Козырева. Судите сами.

     
Prio
отправлено 23:28, 24.01.2009
Почему светятся звезды




Н. А. Козырев был астрономом. И естественно, что он стал подбирать ключи к мировым законам не на Земле, а во Вселенной. В 1953 году он пришел к парадоксальному выводу: в звездах вообще нет никакого источника энергии. Звезды живут, излучая тепло и свет, за счет прихода энергий извне.

Надо сказать, что у Николая Александровича были для такого суждения свои резоны. Еще в 1850 году немецкий физик Р. Клазиус сформулировал постулат, который впоследствии был назван вторым законом термодинамики. Вот как* он звучит: "Теплота не может сама собой переходить от более холодного тела к более теплому'".



Утверждение, вроде бы, самоочевидное: всем доводилось наблюдать, как, скажем, выключенный утюг постепенно становится все более холодным, но никто не видел, чтобы он вдруг стал нагреваться, забирая тепло из окружающего пространства И все-таки против постулата Клазиуса в свое время выступали многие известные ученые — Тимирязев, Столетов, Вернадский... Даже Циолковский назвал такое суждение антинаучным, поскольку из постулата Клазиуса вытекала неизбежность тепловой смерти Вселенной.



Если все тела самопроизвольно охлаждайте, гласила она* то в конце концов со временем все звезды по Вселенной погаснут. Значит, наступит, что называется, конец света?



Сто с лишним лет назад два великих ума того времени — Гельмгольц и Кельвин — казалось бы, решили загадку. Звезды — это огромные сгустки газа. Сжимаясь под действием гравитации, они нагреваются до миллионов градусов и обогревают Вселенную. Но... расчет показал, что при такой схеме работы наше Солнце должно было израсходовать всю свою энергию задолго до того, как на нашей планете проявились бы первые проблески жизни.



Затем наступила очередь другой точки зрения: звезды стали считать сначала ядерными, а потом и термоядерным!: реакторами. Но и здесь не все гладко: эксперименты и расчеты показывают, что температура внутри Солнца гораздо меньше той, что требуется для поддержания термоядерной реакции.



Таким образом, получается, что недостающую энергию звезды берут из окружающего пространства. Однако само по себе пространство не может быть источником энергии — оно для этого достаточно пассивно. Но, с другой стороны, пространстве неотделимо от времени: помните мы с вами говорили о существовании пространства-времени?..



Но тогда что же представляет собой само время? Не является ли оно своеобразным вечным двигателем Вселенной? Как говорил главный герой романа М. Анчарова "Самшитовый лес" изобретатель Сапожников, если в поток времени поставить вертушку, она закрутится.



Но что это за поток? Справедлив ли для него закон сохранения энергии? И откуда он эту самую энергию берет?.. Вот сколько вопросов, и все они требуют обстоятельных ответов.



Закон сохранения энергии был выведен в XVII зеке в результате многочисленных экспериментов с различными движущимися телами. К середине XIX века этот закон был распространи; не только на чисто механические движения, но и на другие виды процессов, в частности тепловые. Не случайно в термодинамике этот закон называют первым началом, подчеркивая тем самым его важность.



Но второй закон термодинамики, тот самый постулат Клазиуса, о котором мы говорили, гласит, что тепло (энергия) из. системы куда-то все время утекает. Куда? Во что оно переходит? Точного ответа на эти вопросы пока нет. Но это вовсе не значит, что закон сохранения энергии во Вселенной нарушается.



Возьмем хотя бы такую аналогию. Вы видите у человека на руке часы, которые не надо заводить. Что, в них работает вечный двигатель? Вовсе нет. Хитроумный механизм использует либо механическую энергию движений самого человека, либо разность температур между его телом и окружающей средой, либо энергию естественного и искусственного света...



Так и с потоком времени. Если мы не знаем, откуда он берется и куда уходит, это вовсе не значит, что мы можем говорить о нарушении основных законов природы. Так считал Козырев, так считают сегодня многие ученые. И надо сказать, жизнь с каждым годом позволяет им все более утвердиться на этой точке зрения.



В свое время тот же Козырев обратил внимание на двойные звезды. Эти образования могут состоять из звезд разных классов, но, объединившись в пару, они обретают удивительно схожие черты — одинаковую яркость, спектральный тип и т. д. Возникает впечатление, что главная звезда воздействует на свой спутник и постепенно передает ему нечто, изменяющее его облик. Но что именно?

Межзвездные расстояния достаточно велики, чтобы исключить влияние обычных силовых полей. На таких расстояниях работают только силы гравитации и... время. Силы гравитации удерживают небесные тела в одной системе, а время, может статься, помогает им обмениваться энергией.



Свою догадку Козырев пробовал проверить на ближайшей к, нам небесной паре: Земля — Луна. Так он пришел к гипотезе о лунном вулканизме, впоследствии получившем подтверждение на практике. Потом его внимание привлекли "черные дыры". Ведь их тоже можно считать в некотором роде сверхплотными звездами — коллапсарами с огромным полем тяготения. Туда, в эти ''дыры", скорее всего, и утекает энергия из нашей Вселенной. Но безвозвратно ли она утекает?

     
Prio
отправлено 23:29, 24.01.2009
Стрела времени




То, что на сегодняшний день нам известно о строении Вселенной, позволяет считать, что ее энергия утекает не безвозвратно. Рано или поздно процесс поглощения вещества "черными дырами" может прекратиться, и тогда начнется обратный процесс — выход энергии и вещества наружу. Быть может, начиная с этого момента, и время потечет вспять?



Правда, весь предыдущий опыт человечества пока говорит о том, что большинство события и явлений, с которыми мы имеем дело в повседневной жизни, не обладают обратимостью: человек может только стареть, разбитая чашка никогда уже не станет целой, молоко, разлившееся из опрокинутой бутылки, никогда не соберется в нее вновь...



Однако многие явления обладают обратимостью: автомобиль может проехать сначала в одну сторону, а потом вернуться, день сменяется ночью, а потом снова приходит день, все молекулы участвуют в беспорядочном броуновском движении... Откуда возникает необратимость, если законы движения обратимы?



Вопрос непростой. О нем не случайно говорят как о парадоксе обратимости. Споров вокруг него было немало, пока Л. Больцман все-таки не нашел решение проблемы. Вот ход. его рассуждений.



Капля сиропа, расплывшаяся в воде, может снова собраться. Тепло может перейти обратно к тому из брусков, который раньше был более горячим. Газы, выпущенные из двух баллонов в общий сосуд, могут когда-либо снова разделиться... Все эти процессы в принципе возможны хотя бы потому," что из свойств механического движения молекул следует, что возможны как перемешивание газов, так и обратный ему процесс. Ведь атомы и молекулы движутся хаотично,, а раз имеется обратимость в движениях отдельных атомов, значит возможно и обратимое поведение всего их сообщества.



Категорического запрета на это нет. А то, что мы не наблюдаем их в повседневной жизни, говорит лишь о том, что обратные явления по сравнению с прямыми происходят очень и очень редко. Может случиться так, что 'за всю историю Вселенной нам не доведется их наблюдать, но это. вовсе не значит, что они не могут происходить вообще.



Эту идею впоследствии поддержал уже известный нам Н. А. Козырев. Он предположил, что все известные законы движения — лишь некоторая приближенная форма точных законов, которые еще предстоит открыть. И если в приближенных законах соблюдается обратимость, то точные законы будут обладать обратимостью,, хотя, вполне возможно, она и будет выражена достаточно слабо.



Косвенным подтверждением этих высказываний можно, пожалуй, считать открытие не столь давно одной не совсем обычной элементарной частицы. Речь идет о нейтральном К-мезоне. Эта нестабильная, распадающаяся Частица "различает" прошлое и будущее; два направления времени для нее не симметричны.



Тогда получается, что направление времени связано с направлением большей части процессов во Вселенной? Именно такую догадку выдвинул в свое время английский физик Артур Эддингтон. Он высказал предположение, что направление течения времени связано с расширением Вселенной, и назвал это явление "стрела времени". В гот момент, когда расширение сменится сжатием, может повернуться в другую сторону и "стрела времени".



Так это или не так, еще предстоит разобраться нашим потомкам. А для этого нужно понять, из чего же именно состоит поток времени.

     
Prio
отправлено 23:30, 24.01.2009
Фотон... Гравитон... Хронотон?




В настоящее время мы как-то уже привыкли к тому, что все окружающие нас излучения можно разделить на составляющие их частицы. К примеру, всем сегодня известно, что свет в конечном итоге состоит из фотонов. Причем никто даже особо не удивляется тому, что фотону свойствен дуализм: в одних случаях он ведет себя как материальная частица, в других — как электромагнитная волна.



Более того, если мы как следует углубимся в дебри современной квантовой физики, то в конце концов обнаружим, что микрочастица по своей природе не является, вообще-то говоря, ни тем и не другим.



Она только похожа на волну или на частицу в том или ином эксперименте. Если в какой-то ситуации микрочастица похожа на "обычную частицу", то для нее большую определенность приобретает ее положение в пространстве. Если же она в данном конкретном случае более походит на волну, то и большее значение приобретает ее импульс. И физики пользуются в каждом конкретном случае тем или иным определением.



Однако они, эти определения, вообще говора, введены больше для удобства расчетов. На самом деле и импульс и положение частицы довольно неопределенны. Причем чем более определенна одна величина, тем более неопределенна будет другая.



Физики-теоретики даже сумели выразить количественно соотношение определенности и неопределенности и спокойно им пользуются при описании различных событий в микромире.



Так обстоят дела с описанием электронов, фотонов и других частиц, о которых на сегодняшний день физики знают достаточно много. Ну а как быть с гравитацией и временем?



Этот вопрос тоже в немалой степени занимает внимание теоретиков. О возможности существования гравитационных волн говорилось уже в первые годы развития общей теории относительности. А. Эйнштейн доказал, что из его теории следует возможность и даже необходимость существования таких волн.



Гравитационные волны — это волнообразные колебания пространства-времени, придающие ему дополнительную, бегущую волнами, как "барашки" по морю, искривленность. Теоретики полагают, что эти волны распространяются в четырехмерном пространстве-времени примерно так же, как в воздухе распространяются упругие акустические колебания или электромагнитные волны.



Гравитационные волны, как и электромагнитные, распространяются с предельной скоростью — 300 тыс. км/с. Однако при этом непонятно, почему гравитационные возмущения распространяются намного быстрее световых. Возможно, для их распространения используются более короткие, внепространственные каналы типа "червоточин"?



Точного ответа на этот и другие подобные вопросы пока нет. Даже сами гравитационные волны пока не удается наблюдать или экспериментально зарегистрировать. Опытные установки, построенные в нескольких точках земного шара, пока не дали результатов, которые бы можно было однозначно интерпретировать как доказательство существования гравитационных волн.



И тем не менее теоретики отважно продолжают свои изыскания. К примеру, еще в 30-е годы советский физик М. П. Бронштейн применил к описанию гравитационных волн математический аппарат квантовой теории микромира. Он предположил, что гравитационные волны должны быть если не тождественны, то по крайней мере родственны электромагнитным колебаниям, свету.



И что же, теория показывает, что при некоторых условиях гравитационные волны вполне могут вести себя как потоки неких частиц, квантов этих волн. По аналогии с фотонами и электронами, эти частицы получили название гравитонов.



Гравитоны, с одной стороны, очень похожи на фотоны, полагают теоретики. Как и частицы света, они всегда должны двигаться с максимальной скоростью. Их масса должна быть связана с движением — масса покоя, как таковая,, отсутствует.



С другой стороны, между этими частицами должны быть и определенные отличия. Фотон взаимодействует только с электрическими заряженными частицами, гравитон же со всеми — он представитель всемирного тяготения.



Следующий логический шаг — обнаружение квантов времени. Существуют ли они на самом деле? Точно этого пока никто не знает — у нас нет приборов, которые бы смогли фиксировать эти частицы.



Единственное, на что мы пока можем положиться, — на опыт всей физики. А он, этот опыт, учит: нет никакого времени, которое бы существовало "само по себе". Оно всегда связано с явлениями, которые происходят в окружающем нас мире. А значит, вполне вероятно, что на него должны распространяться законы этого мира. Так что в этом смысле мы вполне можем говорить о возможности существования неких частиц времени — хронотонов. Или хрононов?.. Точного названия для этих частиц пока нет, и их еще никому, как мы говорили, не удалось обнаружить. Хотя об атомарности, квантованное времени спорили еще мудрецы древности.



Однако физика — наука точная: Она не может существовать на одних предположениях. И если мы хотим реально говорить о возможности путешествий во времени, а тем более о машинах, это время преобразующих по нашему желанию, то, конечно, необходимы эксперименты, которые бы позволили отыскать не только кванты тяготения, но и кванты времени. Мерилом истины может быть только Эксперимент. Но возможен ли Он в нашем конкретном случае? Теоретики, а тем более экспериментаторы пока не могут ответить на этот вопрос однозначно. Дело в том, что некоторые расчеты показывают, что уменьшить неопределенность в данном вопросе смогут лишь эксперименты, при которых микрочастицы должны будут обладать энергиями порядка 109 джоулей. Однако самые мощные ускорители, которые планируется построить в ближайшее время, — могут обеспечить едва ли миллиардную долю этой энергии. По всей вероятности, подобный ускоритель вообще никогда нельзя будет построить — ведь для его работы не хватит никаких планетарных ресурсов.



Впрочем, кое-какой выход из положения все-таки намечается. Если мы не можем создать подобные условия на нашей планете, надо поискать, — не существуют ли они где-то во Вселенной. И тогда, наблюдая за ходом эксперимента в лаборатории природы, мы и сможем получить ответ на интересующие нас вопросы.



В связи с таким подходом многие исследователи в последние годы самым настоятельным образом советуют повнимательнее присмотреться к вакууму, то есть к космической пустоте, которая окружает все небесные тела. Судя по некоторым данным, эта пустота может оказаться вовсе не так пуста, как казалось еще недавно.



На сегодняшний день под вакуумом понимают такое состояние физической системы, когда в ней нет ни полей, ни частиц. Это состояние наименьшей возможной энергии, но оно. вовсе не значит, что энергии в системе нет вовсе, В вакууме все время протекают самые различные превращения. И, разобравшись в них, мы, вполне возможно, еще очень многое поймем в сущности окружающего нас мира, в том числе ,и в такой странной и загадочной на сегодняшний день физической субстанции, какой является время.



"Я прекрасно знаю, что такое время, пока не думаю об этом. Но стоит задуматься — и вот я уже не знаю, что такое время". Слова древнего мудреца остаются верными и в наши дни. Но это вовсе не значит, что над сущностью времени не надо вообще задумываться. Надо! Именно на этом пути и лежит возможность создания удивительных, фантастических пока устройств — машин времени.



Временная спираль завершает свой очередной виток. И на пороге нового тысячелетия мы подводим итоги своих знаний о природе времени, чтобы затем вновь отправиться в путешествие сквозь годы, познавая суть времени все глубже...

     
Андрей

Россия, Самара
отправлено 14:54, 09.06.2009
+1

     
 


Основан в 2008 году